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Business and Activity Section 

 

 

(a) Generated Commitments  

One manuscript is prepared and will be ready to submission: “Convolutional Neural Network Based Damage 

Diagnostics for Structures with Weldment via Decoding Ultrasonic Guided Wave”. PhD student Zi Zhang who 

mainly takes charge of this research is the first author. Second manuscript is also nearly completed and will be 

for submission.  

 

(b) Status Update of Past Quarter Activities  

 

The research activities in the 9th quarter included: (i) Task 4: Completed all efforts, including remaining 

work on structural initial nonlinearity to address: (a) aging effects on with and without weldment toward 
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data variances, and (b) aging effects on with and without protective coating are in progress and will be 

reported in the coming period. (iii) Task 6: survey questionnaire was developed to collect the critical 

information in best practices and uncertainty and will be used for calibration and verification of the concept.  

(c) Cost share activity 

Cost share was from the graduate students’ tuition waiver  

 

(d) Summary of detailed work for Tasks 4 and 6 

 

Task 4: Decode Variance from Uncertainties 

In this section, the aging effect of materials and the coating effect were considering in the experiment. 

Note that aging effects with and without protective coating associated with material degradation through 

both experimental and numerical investigations have prepared and are still in progress under the exposure 

of accelerated weathering, and will be fully summarized in the coming period.  

 

Table 1. Remaining test matrix for decoding variance from uncertainties 

Step Sources of Variation Task Factors Levels of the Factors 

7 Structural initial nonlinearity Task 4.3 

Aging effect 

Coupled with weldment 

Noise interference 

(experimental) 

Under different accelerated 

weathering (aging) times 

8 Structural initial nonlinearity Task 4.3 

Aging effect 

Coupled with weldment 

Noise interference 

(numerical) 

Under different accelerated 

weathering (aging) times 

 

Sub-Task 4.3. Reducing variance due to structural initial nonlinearity 

Oil and gas currently provide 54% of the world’s primary energy need. Accordingly, the United States 

alone consists of over 2.6 million miles of oil/gas pipelines. However, most of the pipelines are susceptible 

to suffering the environment effect leading to aging and corrosion problems. Pipeline aging and corrosion 

problems occur because the interaction between the pipeline and the environment, resulting the 

deterioration and delamination of the pipeline material. The destruction of pipelines has the potential of 

contaminating the environment and even the risk of explosion [1]. Therefore, the detection of the corrosion 

in early stage is critical.  

Due to the wide span of pipeline structures, it is necessary to implement the regular inspection and 

routine maintenance by non-destructive test (NDT) during the service life. Conventionally, the utilize of 

point-by-point NDT techniques, such as ultrasound thickness testing, magnetic particles, radiography, and 

ultrasound phased array, represent a generally time intensive and costly monitoring process [1]. Among 

them, the ultrasonic guided waves exhibit their merits over other techniques, due to their long distant 

propagating with low energy loss and sensitivity to tiny defects. Several researchers have already employed 

the ultrasonic guided waves to detect corrosion in structures. In 1998, Ravenscroft et al. [2] introduced a 

novel ultrasonic method to detect the global of pipes and vessels, where was sensitive to corrosion and 

cracking. In this method, ultrasound was directed into the pipe at a critical angle and two actuators was 

used for a transmitter and a receiver. Defects are detected by measuring the reduction in the energy of the 

received signal. Later, ultrasonic measurement method was used to inspect the corroded thickness of plates 

[3]. Huthwaite et al. [4] employed the guided wave tomography to offer a measure method which accurately 

predicted the wall thickness losses in plated caused by corrosion. The measurements monitored by 

transducer array were restricted into a map of wall thickness. The corrosion of coated plates was also 

detected by this method. An embedded ultrasonic sensing network was established by Ervin et al. [5] and 
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ultrasonic guided waves were used to monitor the corrosion location of the rebar buried in mortar. 

Longitudinal waves at high frequency were utilized in this experiment by pulse-echo configuration due to 

the fastest propagating and lowest attenuation. Sun and Dai [6] proved that L (0,2) mode waves combined 

with wavelet transform method to detect the position of axial defects. Torsional guided waves were also 

used for corrosion detection, where the reflection of the waves was attenuated when the pipe was corroded. 

Some researchers used numerical simulation method to simulate the corrosion defect as a notch due to the 

corrosion can caused the thickness loss of the steel [1]. The most of research was focused on localize or 

detect the corrosion, however, measurement of the corrosion process is also important for engineering to 

estimate the situation of the pipe.  

Therefore, as illustrated in Fig. 1, this study tended to inspect the aging stage of the pipelines by 

ultrasonic guided waves.  

 

Fig. 1 Flowchart of the process 

 

4.3.1 Step 7: Reducing variance due to aging effect 

The aging problem would be occurred when corrosion damage gradually severed due to the properties 

of the material changed at this process. Thus, pipes with and without weldment were corroded in the salt 

fog chamber which accelerated the corrosion process. Fig. 1 illustrated the whole flowchart of this study. 

Firstly, the data was collected from experiment and simulation. Several pipelines with different states were 

designed and piezoelectric transducers were glued at left side.  Gathering the guided wave signals one day 

a time. In other hand, simulation model was set up in finite element software. Comparing the results in 

simulation and experiment. Next, the mass loss method was used to calculate the corrosion rate. Later, the 

relationship between the guided wave signals and the corrosion rate was extracted. Finally, deep learning 

methods, such as convolutional neural networks (CNN), was used herein to enhance information extraction 

and better classify structural uncertainty from data in pipeline associated with corrosion rate. 

Guided wave signals Collection 

Data from Simulation 

Corrosion rate measurements 

Mass loss 

Features of guided wave to 

indicate the corrosion 

degradation 

Data from Experiment 

Deep learning networks 
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Corrosion and fatigue cracks were two most important types of damage in aging structures. Studies on 

corrosion degradation could help engineering to have a reasonable estimation for the inspected structures. 

The corrosion degradation of a steel structure depends on several mechanical and electrochemical factors. 

Generally, the uniform corrosion or pitting corrosion are usually time-dependent parameters. Some 

researchers focused on quantifying the effect of corrosion by various parameters. The traditional model of 

corrosion rate was a linear relationship between time and the material lost [7]. Later, Guedes Soares and 

Garbatov [8] developed a model that describes the growth of corrosion wastage by a non-linear function 

of time in three phases. After that, several students made modifications based on this model. In addition, 

for structure with coating protection, the measurements were changed. One of the electrochemical 

techniques, electrochemical impedance spectroscopy (EIS), was used to measure the corrosion rate and 

learned the corrosion mechanisms for coating protected structures. However, the corrosion rate was varied 

by environment and material. In order to estimate the life cycle of the structures, the relationships between 

corrosion rate and inspection data should be investigated. In this research, the corrosion degradation was 

measured and the relationship between ultrasonic guided wave and corrosion rate were explored.  

 

4.3.2 Common forms of pipeline corrosion 

Corrosion attacks are most widespread defects occurred on pipelines. The defects can be separated 

into two types: one is uniform/general corrosion, the other is pitting corrosion. Uniform/general corrosion 

happens when the corrosion proceeds at the same rate on the surface of the steel pipe, resulting in an 

approximately uniform reduction in thickness. It is the most common type of corrosion which can lead to 

leakage or rupture of the pipelines [9-10]. To measure the corrosion rate, the depth of penetration from the 

surface is calculated to express in millimeters per year or miles per year. Several methods were used to 

prevent the corrosion, such as surface coatings. Pitting corrosion is a localized deterioration on the pipe 

surface leading to a pit formation. It occurred because of the material defects, mechanical damage, or 

chemical erosion.  

 

4.3.3 Corrosion measurement for metallic structures 

The value of corrosion rate can be calculated by mass loss measurement [11]. The coupons were taken 

out, cleaned and weighted. Each of the values is measured three times and take the average value. The 

corrosion rate is expressed as follow [12]: 

𝐶𝑟 =  
𝑀1 − 𝑀2

𝑆 ∗ 𝑡
(1) 

where M1 corresponds to the initial weight of the sample, M2 is the current weight of the sample after 

corrosion happened. S represents the corrosion area, and t represents the corrosion hours. When gather the 

weight of the sample, it should be performed under the condition with a nearly constant temperature of 

25°C and low humidity [13]. The weight of the corroded sample is measured after removing the corrosion 

product.  

 

 

4.3.4 The experiment of pipeline corrosion process 

4.3.4.1 Experiment set up 

Two different states of the pipe were designed, including a normal pipe without damage and a pipe 

with welding. The pipes were placed in a salt fog chamber to accelerate the corrosion. Due to the size of 

the chamber was limited, the pipe should not be too large. Thus, the diameter of the pipes was equal to 3 

inches, the thickness was 0.125 inch, and the length was 34 inches. The material of the pipe was A36 steel 

without coating but has a film at the outside surface which is a part of the process of flattening the steel. 

To calculate the corrosion rate, mass loss was required for each test which means the corrosion product on 

the pipe surface should be removed. This process might affect the subsequence of following corrosion. 

Thus, several steel plates were added here to corrode together with the pipes. The value of the mass loss of 
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steel plates were instead of the values of the corresponding pipes. Fig. 2 showed the pipes and the steel 

plates. The steel pipes and the plates were put into the salt fog chamber.  

 

 
 

Fig. 2 Experiment samples 

 

4.3.4.2 Experiment results 

The signals were collected from corroded pipes. Two main wave packets were clearly represented in 

the following figures, reporting the initial extraction and the right boundary reflection. Between two main 

packets, several small waves were from the reflection and scattering during the guided wave propagation. 

Fig. 3(a) demonstrated the initial state of the pipe. 4 transducers worked together to generate the activated 

signals. Because the signals overlapped and interfered with each other, multiple excitations were produced 

in the front part of the received signal. In addition, the noise from the environment, machine and sensors, 

the received signals were become more complicated. The result obtained from the guided wave excitation 

was the pipe experienced 48-hour accelerated weathering, as shown in Fig. 3(b). The highest amplitude 

responded the middle area was increased 12% then Fig. 3(b), meanwhile, the edge reflection had a 7% 

reduced. 
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Fig. 3 Received signals from pipes: (a) onset; (b) after exposure 

 

4.3.5 Step 8: Reducing variance due to aging effect coupled with weldment and operational noise using 

numerical simulation 

This section attempted to calibrate the model set by finite element and indicate characteristics of 

guided wave propagating along a structure with corrosion defects. The prototype was a 34 inches long steel 

pipe. Simulating the uniform corrosion was a tough problem. Some researchers construct round-shape holes 

to simulate the corrosion damage. The depth of the hole represented the severity of the corrosion [14-15]. 

Thus, in this model, plenty of circular pits were constructed on the out surface of the pipe from 5 inches to 

(a) (b) 
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30 inches. Left and right ends of the pipe were sealed against corrosion, on which the sensors were mounted 

for ultrasonic guided waves test. Six scenarios of the pipe were listed in Table 2. Totally, 6 different states 

were discussed in this part. To ensure the calculation accuracy and computational efficiency, the meshing 

size of the pipe (used for simulation) ranged from 2 to 5 mm. In addition, the simulation time step is set to 

be 0.5 μs. The excitation was a 100 kHz 5-cycle sinusoidal signal operated by Hanning window.  

 

Table 2 Test matrix for pipes 

Case Label Diameter Weldment Damage 

Reference 
State #1 3 inches \ \ 

State #2 3 inches With girth weld \ 

Variance due to 

aging effects 

State #3 3 inches \ Uniform Corrosion (slight) 

State #4 3 inches \ Uniform Corrosion (serous) 

State #5 3 inches With girth weld Uniform Corrosion (slight) 

State #6 3 inches With girth weld Uniform Corrosion (serous) 

 

The simulation was calibrated, and the result was shown in Fig. 4. The signals from experiment and 

the simulation were normalized to ensure the amplitude of the data was close. The prototype was an 

undamaged pipeline excited by guided waves with 100 kHz. The black line was the wave collected from 

experiment, and the red dash line represented the simulation result. Clearly, two signals had similar 

excitation. Due to the experiment used several sensors worked together to excite the pipe, thus the front 

part overlapped by several signals.   

The entire procedure of the guided waves propagation in the pipeline was clearly shown in Fig. 5. 

Without damage, the waves had less reflection. The energy of the excitation had less attenuated during 

propagating.  The waves spent about 4E-4 s to be received by the sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Calibration of numerical simulation 
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Fig. 5 Guided waves propagated through the pipe. 

 

The test results were shown in Fig. 6. A total number of 600 signals were input into the pretrained 

CNN model, and the prediction of each data was obtained. In most case, the CNN model could accurately 

predict the result. Specifically, the accuracies were equal to 100% when noise levels were from 100 dB and 

70 dB as shown in Fig 6(a).  When noise level increased to 60 dB, the total accuracy was 91.17%, which 

means 53 data points were misled into wrong categories. The confusion matrix in Fig. 6(b) illustrated the 

specific results, where the categories S1 to S2 represented the signals in State #1 to #6. Obviously, 99% of 

the data in State #1 was predict correctly, and only 1.0% of data was misclassified into State #5. 4 data in 

State #2 were failed identification, with 2 points misclassified into State #3 and State #4 respectively.  

 

     
(a)SNR=100 dB                                                 (b) SNR=70 dB 

Fig. 6 Test results 
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Task 6: Explore Variance from Human-Machine Interfaces 

In this section, we developed survey questionnaire to gain a deep understanding of human-machine 

interaction. In addition, the decision tree for the human-machine was developed, in order to calibrate and 

verify the concept. 

 

Sub-Task 6.1. Survey design 

Totally 12 questions below were developed for coming survey questionnaire. These raised questions 

aim to understand different perspectives of different fields associated with health monitoring of pipelines 

and expectations. Thus, the first question is for the status of audience.  

1.   What pipeline-related industry are you working in 

☐ Pipeline Regulator   ☐ Pipeline Owner   ☐ Pipeline Consultant   ☐ Pipeline Manufacturers   ☐ Pipeline 

Constructor   ☐ Pipeline Designers   ☐ Pipeline Inspector   ☐ Academic   ☐ Specify Others_____________ 

The second question is to understand the lifetime of the normal pipeline. This data may vary according 

to the geographic location and the different uses, and different transport materials. We just need to get a 

general value to estimate the pipeline. The third question is to study the inspection period of pipelines. The 

choices are from 1 year to 5 years.  

2. What is the probability of a service life of pipeline you are expected to be? 

20 years:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

30 years:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

50 years:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

70 years:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

70 years+: Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

(scale 1: unlikely; scale 5: most likely) 

 

3. How often should the pipeline be inspected? (select the probability of following years) 

1 year:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

2 years:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

3 years:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

4 years:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

5 years:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

5 years+: Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

(scale 1: unlikely; scale 5: most likely) 

 

4. What types of defects/damages you think are important to collect from pipeline inspection for 

quantification of pipeline damage probability? 

Cracks: Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely  

Corrosion:    Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

Welding defects/damage:    Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

Aging degradation:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely  

Pipe leaking:           Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely  

External damage: Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

Internal damage: Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

(scale 1: unlikely; scale 5: most likely) 

 

5. What types of defects/damages you think are important to collect from pipeline inspection for 

quantification of pipeline damage probability? 
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6. What type of mechanical damage are most difficult to quantify? 

Cracks: Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely  

Corrosion:    Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

Welding defects/damage:    Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

Aging degradation:   Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely  

Pipe leaking:           Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely  

(scale 1: unlikely; scale 5: most likely) 

 

7. What three types of sensors or systems have you used or is planning to use for cracking detection: 

☐ In-line inspection using smart pigs or other robotics    ☐ guided wave inspection    ☐ Ultrasound 

thickness testing  ☐ Radiography       ☐ Magnetic particles      ☐ Liquid penetrant      ☐ Acoustic 

emission  ☐ Ground probing radar and other locating device 

☐ Mini-camera     ☐ Specify Others_____________     

 

8. What three types of sensors or systems have you used or is planning to use for corrosion detection: 

☐ In-line inspection using smart pigs or other robotics    ☐ guided wave inspection    ☐ Ultrasound 

thickness testing  ☐ Radiography       ☐ Magnetic particles      ☐ Liquid penetrant      ☐ Acoustic 

emission  ☐ Ground probing radar and other locating device 

☐ Mini-camera     ☐ Specify Others_____________     

 

9. What three types of sensors or systems have you used or is planning to use for weld defect/damage 

detection: 

☐ In-line inspection using smart pigs or other robotics    ☐ guided wave inspection    ☐ Ultrasound 

thickness testing  ☐ Radiography       ☐ Magnetic particles      ☐ Liquid penetrant      ☐ Acoustic 

emission  ☐ Ground probing radar and other locating device    

☐ Mini-camera     ☐ Specify Others_____________     

 

10. What three types of sensors or systems have you used or is planning to use for aging degradation: 

☐ In-line inspection using smart pigs or other robotics    ☐ guided wave inspection    ☐ Ultrasound 

thickness testing  ☐ Radiography       ☐ Magnetic particles      ☐ Liquid penetrant      ☐ Acoustic 

emission  ☐ Ground probing radar and other locating device    

☐ Mini-camera     ☐ Specify Others_____________     

 

11. What three types of sensors or systems have you used or is planning to use for pipe leaking: 

☐ In-line inspection using smart pigs or other robotics    ☐ guided wave inspection    ☐ Ultrasound 

thickness testing  ☐ Radiography       ☐ Magnetic particles      ☐ Liquid penetrant      ☐ Acoustic 

emission  ☐ Ground probing radar and other locating device    

☐ Mini-camera     ☐ Specify Others_____________     

 

12. What is the probability of following uncertainty experienced in pipeline?  

Uncertainty from data collection:              Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely  

Uncertainty from inspector qualification:  Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely  

Uncertainty from data analysis:                  Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely  

Uncertainty from data reporting:                Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely  

Uncertainty from operation conditions       Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

Uncertainty from environmental conditions: Unlikely ☐ 1    ☐ 2    ☐ 3  ☐ 4   ☐ 5 Most likely 

(scale 1: unlikely; scale 5: most likely) 
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13. What are the variances on measuring the above defects/damages with the currently used 

inspection methods, and what are the critical factors that affect the accuracy of the measurements? 

 

14. Are there available pipeline inspection data that can be shared to validate the machine learning 

model and methodology developed in this project? 

 

6.2. Summary of the research activities in the 9th report 

The major research activities are: (i) Task 4: Continue the remaining work on structural initial 

nonlinearity to address: (a) aging effects on with and without weldment toward data variances; and (b) 

aging effects on with and without protective coating toward data variances are in progress and will be 

reported in the coming period. (iii) Task 6: survey questionnaire was developed to collect the critical 

information in best practices and uncertainty.  

 

(e) Description of any Problems/Challenges  

No problems are experienced during this report period 

 

(f) Planned Activities for the Next Quarter  

The planned activities for the next quarter are listed below: 

o We will document and report the complete remaining part to variances due to pipe with and 

without coating in Task 4 in both numerical and experimental investigations.  

o The survey questionnaire will be conducted, and the collected information will be used for our 

model calibration in Task 6.  
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